Math, asked by Anonymous, 10 months ago

What is the formula of cube?​

Answers

Answered by Anonymous
22

\setlength{\unitlength}{0.74 cm}\begin{picture}(12,4)\thicklines\put(6,6){\line(1,0){5}}\put(6,9){\line(1,0){5}}\put(11,9){\line(0,-1){3}}\put(6,6){\line(0,1){3}}\put(4,7.3){\line(1,0){5}}\put(4,10.3){\line(1,0){5}}\put(9,10.3){\line(0,-1){3}}\put(4,7.3){\line(0,1){3}}\put(6,6){\line(-3,2){2}}\put(6,9){\line(-3,2){2}}\put(11,9){\line(-3,2){2}}\put(11,6){\line(-3,2){2}}\end{picture}

\mathcal{\huge{\underline{\underline{\red{Cube}}}}}

✒ A cube is a three dimensional shape or solid with six faces.

\mathcal{\large{\underline{\underline{\pink{Formulae\:Of\:Cube}}}}}

Surface Area of Cube = 6a² in a square units

Volume of cube = a³ cubic units

Length of Diagonal of Face of the Cube =√2a

Length of Diagonal of Cube = √3 a

Lateral Surface Area = 4a²

Properties of Cube :-

  • It has all its faces in a square shape.
  • All the faces or sides have equal dimensions.
  • The plane angles of the cube are the right angle.
  • Each of the faces meets the other four faces.
  • Each of the vertices meets the three faces and three edges.
  • The edges opposite to each other are parallel.

________________________________


Vamprixussa: Awesome !!!!!
Answered by InfiniteSoul
5

\setlength{\unitlength}{0.65cm}\begin{picture}(2,3)\thicklines\put(2,6){\line(1,0){3.3}}\put(2,9){\line(1,0){3.3}}\put(5.3,9){\line(0,-1){3}}\put(2,6){\line(0,1){3}}\put(0,7.3){\line(1,0){3.3}}\put(0,10.3){\line(1,0){3.3}}\put(0,10.3){\line(0,-1){3}}\put(3.3,7.3){\line(0,1){3}}\put(2,6){\line(-3,2){2}}\put(2,9){\line(-3,2){2}}\put(5.3,9){\line(-3,2){2}}\put(5.3,6){\line(-3,2){2}}\put(3.4,5.5){\sf2 cm}\put(0,6.3){\sf2 cm}\put(5.5,7.5){\sf2 cm}\end{picture}

\sf{\huge{\mathfrak{\underline{\boxed{\purple{Cube}}}}}}

  • A rectangular solid , in which each face is a square , is called a cube.
  • Its length = breadth = height = edge

\sf{\bold{\pink{\underline{\underline{Formulae \: related \: to\: cube }}}}}

☞ volume of cube =  (side)^3

☞ Total surface area =  6a^2

☞ lateral surface area =  4a^2

☞ length of the diagonal = side\sqrt{3}

_________________❤

Similar questions