Math, asked by mahikasingh2874, 11 months ago

What is the formula of cubic polynomial

Answers

Answered by xCM0685x
3

Step-by-step explanation:

the \: formula \: for \: cubic \:  \\  polynomial \: is  \geqslant \\  \\   {ax}^{3}  + {bx}^{2}  +  {cx} \:  + d

Answered by SrijanShrivastava
0

For any cubic equation of the general form:

ax³+bx²+cx+d = 0

Its three roots are given by the cubic formula:

 x_{1,2,3} =  \frac{ - b}{3a}  +   ω_k \sqrt[3]{  - \frac{  {b}^{3} }{27 {a}^{3}  } +  \frac{bc}{6 {a}^{2} }   -  \frac{d}{2a} +  \sqrt{( - \frac{  {b}^{3} }{27 {a}^{3}  } +  \frac{bc}{6 {a}^{2} }   -  \frac{d}{2a} )^{2}   - ( \frac{ {b}^{2}  - 3ac}{9 { a}^{2} }  }) ^{3}    }  +({ω_k }^{2}) \sqrt[3]{ - \frac{  {b}^{3} }{27 {a}^{3}  } +  \frac{bc}{6 {a}^{2} }   -  \frac{d}{2a}  - \sqrt{( - \frac{  {b}^{3} }{27 {a}^{3}  }  +    \frac{bc}{6 {a}^{2} }   -  \frac{d}{2a} )^{2}   - ( \frac{ {b}^{2}  - 3ac}{9 { a}^{2} }  }) ^{3} }

Where,

 ω_k = 1 , \frac{-1}{2} ± \frac{i√3}{2}

where, i = √(–1)

Similar questions