what is the formula of integration 1/x square+a square dx
Answers
Answered by
1
Answer:
I=∫1x2–a2dx⇒I=∫1(x–a)(x+a)dx⇒I=12a∫[(x +a)–(x–a)](x–a)(x+a)dx⇒∫dxx2–a2=12a[∫1x –adx–∫1x+adx]. Using the integral formula .
Answered by
5
⇒∫(1/x²+a²)dx
⇒here let us take x=atant
⇒dx=asec²tdt
⇒so, x²=a²tant
⇒∫(1/a²tan²t+a²)asec²tdt
⇒∫(asec²t/a²sec²t)dt
⇒∫(1/a)dt
⇒t/a
so, we have taken x=atant
so, t=tan inverse(x/a)
so answer will be 1/a(tan inverse(x/a)).
Similar questions