What is the formula to convert degree into radian
Answers
Answer:
Degree and Radian Measure Formula
In mathematics, the radian is the standard unit of angular measure. An angle’s measurement in radians is numerically equal to the length of a corresponding arc of a unit circle. The relationship or the connection between the arc length and radius of a circle defines radian of a circle. Degree and radian formula used to convert, degree to radian or radian to degree.
Radian=ArcLengthRadiusLength
Radian=Degree×π180
Here are few Degree Measures and their corresponding Radian Measures –
30°=π6
45°=π4
60°=π3
90°=π2
120°=2π3
135°=3π4
150°=5π6
180°=π
210°=7π6
225°=5π4
240°=4π3
270°=3π2
300°=5π3
315°=7π4
330°=11π6
360°=2π
Solved Examples
Question 1:
Convert 220° into radian measure?
Solution:
Given Degree = 220°
Formula is,
Radian = degree×π180
Radian = 220×π180
Radian = 11×π9
Radian = 3.837
Answer:
This is the way to convert degree into radian.