Math, asked by DheerajReddy16, 1 year ago

what is the fourth term of an AP of n terms whose sum is n(n+1)​

Answers

Answered by Brainlyconquerer
20

Answer:

Forth term of the A.P is \huge{\boxed{\bold{\mathsf{A_4=8}}}}

Step-by-step explanation:

Given:

Arithmetic progression with "n" numbers of terms.

whose sum \bold{\mathsf{S_n= n(n+1)}}......(i)

To find : fourth term \bold{\mathsf{A_4 = a + (n-1)d }}

Let first term be a , common difference be d.

Put n = 1 in eqn (i)

\bold{\mathsf{S_n= n(n+1)}}

\bold{\mathsf{S_1= 1(1+1)}}

\bold{\mathsf{S_1= 2}}

put n = 2 in eqn (i)

\bold{\mathsf{S_n= n(n+1)}}

\bold{\mathsf{S_2= 2(2+1)}}

\bold{\mathsf{S_2= 6}}

As we know \bold{\mathsf{S_1= }} that is sum of 1st term will be its the first term.

so, \bold{\mathsf{A_1= 2}}

Now \bold{\mathsf{S_2=A_1 + A_2 }}

Now put known values

\bold{\mathsf{6=2 + A_2 }}

\bold{\mathsf{A_2=4 }}

we get A2 = 4 , A1 = 2

\bold{\mathsf{A_2 - A_1 =4 -2 = 2}}

Apply formula

\bold{\mathsf{A_n=a + (n-1)d}}

Put n= 4

Put in all the known values

\bold{\mathsf{A_4=a + (4-1)d}}

\bold{\mathsf{A_4=8}}

hence, Forth term of the A.P is \bold{\mathsf{A_4=8}}

\rule{200}{1}

Formula used:-

\bold{\mathsf{A_n=a + (n-1)d}}

Similar questions