Chemistry, asked by BrainlyHelper, 1 year ago

What is the frequency and wave-length of a photon emitted during a transition from the n = 5 state to the n = 2 state in the hydrogen atom.

Answers

Answered by anirudhamailare
2

It's as mentioned in attachment

Attachments:
Answered by phillipinestest
3

\Delta E\quad =\quad 2.18\quad \times \quad { 10 }^{ -18 }\quad \left( \frac { 1 }{ { n }1^{ 2 } } \quad -\quad { n2 }^{ 2 } \right)

Where n_1 = 2 and n_2= 5; this transition gives rise to a spectral line in the "Balmer series".

                 \Delta E\quad =\quad 2.18\quad \times \quad { 10 }^{ -18 }\quad \left( \frac { 1 }{ { 2 }^{ 2 } } \quad -\quad \frac { 1 }{ { 5 }^{ 2 } } \right)

                 =\quad 2.18\quad \times \quad { 10 }^{ -18 }\quad \left( \frac { 1 }{ 4 } \quad -\quad \frac { 1 }{ 25 } \right)

                 \Delta E\quad =\quad 4.58\quad \times \quad { 10 }^{ -19 }\quad J

We know, \Delta E\quad =\quad hv

v\quad =\quad \frac { 4.58\quad \times \quad { 10 }^{ -19 }\quad J }{ 6.62\quad \times \quad { 10 }^{ -34 }\quad Js }

Where, h = Planck's constant = 6.62 \times { 10 }^{ -34 } Js

                  v\quad =\quad 6.91 \times { 10 }^{ 41 } { s }^{ -1 }

Also, \lambda = \frac { c }{ v } = \frac { 3.0 \times { 10 }^{ 8 } m/s }{ 6.91 \times  { 10 }^{ 14 } { s }^{ -1 } }

                  \lambda = 434 \times { 10 }^{ -9 } m\\\lambda = 434 nm

Similar questions