Math, asked by 1vijayshanker70, 1 year ago

what is the function if Alpha beta gamma is root of equation then alpha square+beta square+gamma square

Answers

Answered by nuuk
0

Answer:\alpha ^2+\beta ^2+\gamma ^2=\frac{b^2-4c^2}{4a^2}

Step-by-step explanation:

suppose \alpha ,\beta ,\gamma are the roots of

\Rightarrow ax^3+bx^2+cx+d=0

and we know

(\alpha +\beta +\gamma )=-\frac{b}{2a}\quad \ldots(i)

\alpha \beta +\beta \gamma +\alpha \gamma =\frac{c}{a}\quad \ldots(ii)

\alpha \beta \gamma =-\frac{d}{a}

squaring equation (i)  we get

(\alpha +\beta +\gamma)^2=\frac{b^2}{4a^2}

\frac{b^2}{4a^2}=\alpha ^2+\beta ^2+\gamma ^2+2(\alpha \beta +\beta \gamma +\alpha \gamma )

substitute the value of \alpha \beta +\beta \gamma +\alpha \gamma we get

\frac{b^2}{4a^2}=\alpha ^2+\beta ^2+\gamma ^2+\frac{c^2}{a^2}

\alpha ^2+\beta ^2+\gamma ^2=\frac{b^2}{4a^2}-\frac{c^2}{a^2}

\alpha ^2+\beta ^2+\gamma ^2=\frac{b^2-4c^2}{4a^2}

Similar questions