Math, asked by ishaangupta7438, 1 month ago

what is the graph given the inequality -2x - 3y<6

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given inequality is

\red{\rm :\longmapsto\: - 2x - 3y &lt; 6}

Let we first plot the graph for

\rm :\longmapsto\: - 2x - 3y = 6

Substituting 'x = 0' in the given equation, we get

\rm :\longmapsto\: - 2(0)- 3y = 6

\rm :\longmapsto\:  - 3y = 6

\rm :\longmapsto\: y =  -  \: 2

Substituting 'y = 0' in the given equation, we get

\rm :\longmapsto\: - 2x - 3(0) = 6

\rm :\longmapsto\: - 2x = 6

\rm :\longmapsto\:x =  -  \: 3

Substituting 'y = 2' in the given equation, we get

\rm :\longmapsto\: - 2x - 3(2) = 6

\rm :\longmapsto\: - 2x -6 = 6

\rm :\longmapsto\: - 2x = 6 + 6

\rm :\longmapsto\: - 2x = 12

\rm :\longmapsto\: x =  -  \: 6

Hᴇɴᴄᴇ,

➢ Pair of points of the given equation are shown in the below table.

\begin{gathered}\boxed{\begin{array}{c|c} \bf x &amp; \bf y \\ \frac{\qquad \qquad}{} &amp; \frac{\qquad \qquad}{} \\ \sf 0 &amp; \sf  - 2 \\ \\ \sf  - 6 &amp; \sf 2 \\ \\ \sf  - 3 &amp; \sf 0 \end{array}} \\ \end{gathered}

➢ Now draw a graph using the points (0 , - 2), (- 6 , 2) & (- 3 , 0)

➢ See the attachment graph.

Now, in order to solve the inequality, we use Origin Test.

Let we substitute x = 0 and y = 0 in the given inequality. If it satisfy the given inequality, we shades towards ( 0, 0 ) otherwise shade away from ( 0, 0 ).

So,

On substituting x = 0 and y = 0 in

\rm :\longmapsto\: - 2x - 3y  &lt;  6

we get

\rm :\longmapsto\: - 2(0) - 3(0) &lt;  6

\rm :\longmapsto\: - 0 - 0 &lt; 6

\rm :\longmapsto\:0 &lt; 6

\bf\implies \:(0,0) \: satisfy \: the \: given \: inequality.

\red{\rm :\longmapsto\:Hence \: shades \: towards \: (0,0)}

Attachments:
Similar questions