What is the greatest 4 digit number divisible by 19 which when divided by 5,7,9 leaves respective remainders of 3,5,7
Answers
Answered by
1
LCM of 3,5,7 and 9 is 5x7x9= 315
Largest 4 digit number 9999 on divided by 315 gives queient 31 and remainder 234
So 9999-234 = 9765 is the largest 4 digit number exactly divisible by all the given numers 3, 5, 7 and 9
On division by 3 we want remainder 1 differece is 2
On division by 5 we want remainder 3 differece is 2
On division by 7 we want remainder 5 differece is 2
On division by 9 we want remainder 7 differece is 2
So if we subtract2 from 9765 we get 9763
So this is the number which will give the desired results
THEREFORE THE ANSWER IS 9765
HERE IS YOUR ANSWER
I HOPE THAT THIS WILL HELP U
Largest 4 digit number 9999 on divided by 315 gives queient 31 and remainder 234
So 9999-234 = 9765 is the largest 4 digit number exactly divisible by all the given numers 3, 5, 7 and 9
On division by 3 we want remainder 1 differece is 2
On division by 5 we want remainder 3 differece is 2
On division by 7 we want remainder 5 differece is 2
On division by 9 we want remainder 7 differece is 2
So if we subtract2 from 9765 we get 9763
So this is the number which will give the desired results
THEREFORE THE ANSWER IS 9765
HERE IS YOUR ANSWER
I HOPE THAT THIS WILL HELP U
Similar questions