Math, asked by sergiojr8931, 1 year ago

What is the greatest possible positive integer n if 16^n divides (44)^44 without leaving a remainder.



a. 14



b. 15



c. 28



d. 29?

Answers

Answered by Shaizakincsem
25

16^n=(2^3)^n

44^44=(11*2^2)^44=11^44*2^88

(11^44 *2^88)/ 2^3n

3n=88

n=29

Here 3n=88,n=29. Hence ans will be 29 bcoz 29 is the greatest possible positive integer without leaving remainder.

Answered by lublana
17

Given:

\frac{(44)^{44}}{16^n}

To find:

Greatest possible positive integer value of n if 16^n divides (44)^{44} without leaving a remainder.

Solution:

16=2\times 2\times 2\times 2=2^4

44=11\times 2^2

\frac{(11\times 2^2)^{44}}{(2^4)^n}

\frac{(11)^{44}\times 2^{2\times 44}}{2^{4n}}

Using identity

(a\times b)^n=a^n\times b^n

(a^x)^y=a^{xy}

\frac{(11)^{44}\times 2^{88}}{2^{4n}}

If 16^n divides (44)^{44} without leaving a remainder

Therefore,

2^{4n}=2^{88}

4n=88

n=\frac{88}{4}=22

Hence, greatest possible positive integer value of n=22

Similar questions