what is the height of the cylindrical box of radius 10cm and total surface are 942sq.cm.
Answers
Given :-
Radius of cylindrical box = 10 cm
Total Surface Area of cylindrical box = 942 cm²
To Find :-
• Height of the cylindrical box
Assumption:-
Let the height of the cylindrical box = h
Formula:-
T.S.A = 2πr (r + h)
Solution:-
As we know T.S.A = 942 cm²
So,
942 = 2πr (r + h)
Radius = 10 cm
⟹ 942 = 2 × 22/7 × 10 (10 + h)
⟹ 942 = 440/7 (10 + h)
⟹ 942 × 7 = 440 (10 + h)
⟹ 6594 = 440 (10 + h)
⟹ 6594/440 = (10 + h)
⟹ 3297/220 = (10 + h)
⟹ 3297/220 - 10/1 = h
⟹ 3297 - 2200/220 = h
⟹ 1097 / 220 = h
Height = 1097 / 220 cm
Verification:-
T.S.A = 2 × 22/7 × 10 (10 + 1097 / 220)
⟹ 942 = 440 / 7 ( 2200 + 1097 / 220)
⟹ 942 = 440 / 7 × 3097 / 220
⟹ 942 = 2 × 471
⟹ 942 = 942
L.H.S = R.H.S
✒ Required Answer :-
Height of the cylindrical box = 1097 / 220 cm
Given:
- Radius of cylindrical box(r)=10cm
- Total surface area(T.S.A) of the cylindrical box= 942sq.cm
To Find:
- Height(h) of the cylindrical box.
Solution:
According to formula,
Given that,
T.S.A of cylindrical box = 942cm²
Therefore,
So, the height of the cylindrical box is 4.986cm[approx].
Verification:
Hence, Verified.