Math, asked by gsreevalli77, 8 months ago

what is the highest power of 2 in the expression (1800*25*4^5*21^2*45^2)

Answers

Answered by tkartik414
0

Answer:

the higest power of 2 is 10 i am aure

Answered by mysticd
2

 Given \: expression\: [1800\times 25 \times 4^{5} \times (21)^{2} \times (45)^{2}]

 = ( 2^{3} \times 3^{2} \times 5^{2} ) \times 5^{2} \times (2^{2})^{5} \times ( 3 \times 7)^{2} \times ( 3^{2} \times 5 )^{2} \\= 2^{3} \times 3^{2} \times 5^{2} \times 5^{2} \times 2^{10}\times 3^{2} \times 7^{2} \times  3^{4} \times 5^{2} \\= 2^{3+10}\times 3^{2+2+4} \times 5^{2+2+2} \times 7^{2}

 \boxed{ \pink{ \because a^{m} \times a^{n} = a^{m+n} }}

= 2^{13} \times 3^{8} \times 5^{6} \times 7^{2}

Therefore.,

 \red{ Highest \: power \: of \: 2 \:in \: the }\\\red{ expression } \green { = 13}

•••♪

Similar questions