History, asked by Dishan13082007, 2 months ago

what is the history of heat​

Answers

Answered by darshnasoni2331
0

Answer:

In the early modern period, heat was thought to be a measurement of an invisible fluid, known as the caloric. Bodies were capable of holding a certain amount of this fluid, leading to the term heat capacity, named and first investigated by Scottish chemist Joseph Black in the 1750s.

Explanation:

Answered by Anisha5119
6

Answer:

In the early modern period, heat was thought to be a measurement of an invisible fluid, known as the caloric. Bodies were capable of holding a certain amount of this fluid, leading to the term heat capacity, named and first investigated by Scottish chemist Joseph Black in the 1750s.The history of thermodynamics is a fundamental strand in the history of physics, the history of chemistry, and the history of science in general. Owing to the relevance of thermodynamics in much of science and technology, its history is finely woven with the developments of classical mechanics, quantum mechanics, magnetism, and chemical kinetics, to more distant applied fields such as meteorology, information theory, and biology (physiology), and to technological developments such as the steam engine, internal combustion engine, cryogenics and electricity generation. The development of thermodynamics both drove and was driven by atomic theory. It also, albeit in a subtle manner, motivated new directions in probability and statistics; see, for example, the timeline of thermodynamics.The ancients viewed heat as that related to fire. In 3000 BC, the ancient Egyptians viewed heat as related to origin mythologies.[1] The ancient Indian philosophy including Vedic philosophy believe that five basic elements are the basis of all cosmic creations.[2] In the Western philosophical tradition, after much debate about the primal element among earlier pre-Socratic philosophers, Empedocles proposed a four-element theory, in which all substances derive from earth, water, air, and fire. The Empedoclean element of fire is perhaps the principal ancestor of later concepts such as phlogin and caloric. Around 500 BC, the Greek philosopher Heraclitus became famous as the "flux and fire" philosopher for his proverbial utterance: "All things are flowing." Heraclitus argued that the three principal elements in nature were fire, earth, and water.In the 18th and 19th centuries, scientists abandoned the idea of a physical caloric, and instead understood heat as a manifestation of a system's internal energy. Today heat is the transfer of disordered thermal energy. Nevertheless, at least in English, the term heat capacity survives. In some other languages, the term thermal capacity is preferred, and it is also sometimes used in English.Atomism is a central part of today's relationship between thermodynamics and statistical mechanics. Ancient thinkers such as Leucippus and Democritus, and later the Epicureans, by advancing atomism, laid the foundations for the later atomic theory[citation needed]. Until experimental proof of atoms was later provided in the 20th century, the atomic theory was driven largely by philosophical considerations and scientific intuition.The 5th century BC Greek philosopher Parmenides, in his only known work, a poem conventionally titled On Nature, uses verbal reasoning to postulate that a void, essentially what is now known as a vacuum, in nature could not occur. This view was supported by the arguments of Aristotle, but was criticized by Leucippus and Hero of Alexandria. From antiquity to the Middle Ages various arguments were put forward to prove or disapprove the existence of a vacuum and several attempts were made to construct a vacuum but all proved unsuccessful.The European scientists Cornelius Drebbel, Robert Fludd, Galileo Galilei and Santorio Santorio in the 16th and 17th centuries were able to gauge the relative "coldness" or "hotness" of air, using a rudimentary air thermometer (or thermoscope). This may have been influenced by an earlier device which could expand and contract the air constructed by Philo of Byzantium and Hero of Alexandria. Around 1600, the English philosopher and scientist Francis Bacon surmised: "Heat itself, its essence and quiddity is motion and nothing else." In 1643, Galileo Galilei, while generally accepting the 'sucking' explanation of horror vacui proposed by Aristotle, believed that nature's vacuum-abhorrence is limited. Pumps operating in mines had already proven that nature would only fill a vacuum with water up to a height of ~30 feet. Knowing this curious fact, Galileo encouraged his former pupil Evangelista Torricelli to investigate these supposed limitations. Torricelli did not believe that vacuum-abhorrence (Horror vacui) in the sense of Aristotle's 'sucking' perspective, was responsible for raising the water. Rather, he reasoned, it was the result of the pressure exerted on the liquid by the surrounding air. To prove this theory, he filled a long glass tube (sealed at one end) with mercury and upended it into a dish also containing mercury. Only a portion of the tube emptied (as shown adjacent); ~30 inches of the liquid remained. As the mercury emptied, and a partial vacuum was created at the top of the tube. The gravitational force on the heavy element Mercury prevented it from filling the vaccum

Similar questions