what is the integral value of logx
Answers
Answered by
1
Answer:
Thanx for A2A.
∫logx=xlogx−x+c
Put x=et(i.e.t=logx)
Then dx=etdt
So,
∫logx
=∫log(et)etdt
=∫tet⋅dt
Now using ∫f(t)⋅g(t)dt=f(t)∫g(t)dt−∫f′(t)(∫g(t)dt)dt+c
Similar questions