Math, asked by deeputhakur73378, 1 month ago

what is the inverse Laplace transform of 1 upon x square in bracket X - 1

Answers

Answered by pulakmath007
0

SOLUTION

TO DETERMINE

The inverse Laplace transform of

 \displaystyle \sf{ \frac{1}{ {s}^{2}(s - 1) } }

EVALUATION

Here the given function is

 \displaystyle \sf{ \frac{1}{ {s}^{2}(s - 1) } }

Let

 \displaystyle \sf{ \frac{1}{ {s}^{2}(s - 1) } =  \frac{a}{s}   +  \frac{b}{ {s}^{2} }  +  \frac{c}{s - 1} }

 \displaystyle \sf{ \implies \frac{1}{ {s}^{2}(s - 1) } =  \frac{as(s - 1) + b(s - 1) + c {s}^{2} }{ {s}^{2}(s - 1) } }

Comparing both sides we get

a + c = 0 , b - a = 0 , - b = 1

Which gives

a = 1 , b = - 1 , c = - 1

Thus we get

 \displaystyle \sf{ \frac{1}{ {s}^{2}(s - 1) } =  \frac{1}{s}  - \frac{1}{ {s}^{2} }   -  \frac{1}{s - 1} }

Taking inverse Laplace transform we get

 \displaystyle \sf{{L}^{ - 1}  \bigg[ \frac{1}{ {s}^{2}(s - 1) }\bigg] =  {L}^{ - 1} \bigg[\frac{1}{s}  - \frac{1}{ {s}^{2} }   -  \frac{1}{s - 1} \bigg]}

 \displaystyle \sf{ \implies \: {L}^{ - 1}  \bigg[ \frac{1}{ {s}^{2}(s - 1) }\bigg] =  {L}^{ - 1} \bigg[\frac{1}{s} \bigg]  - {L}^{ - 1} \bigg[\frac{1}{ {s}^{2} }\bigg]  -  {L}^{ - 1} \bigg[\frac{1}{s - 1} \bigg]}

 \displaystyle \sf{ \implies \: {L}^{ - 1}  \bigg[ \frac{1}{ {s}^{2}(s - 1) }\bigg] =  1  - t  -   {e}^{  t} }

FINAL ANSWER

 \displaystyle \sf{  \: {L}^{ - 1}  \bigg[ \frac{1}{ {s}^{2}(s - 1) }\bigg] =  1  - t  -   {e}^{  t} }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. Laplace transform (D²-3D+2)y=4 given y(0)=2 and y’(0)=3

https://brainly.in/question/32934012

2. find integration of e2x-epower -2x / e2x +epower-2x dx

https://brainly.in/question/31921167

Similar questions