Math, asked by aatingyeng46, 1 year ago

What is the L.C.M. of 10/21, 20/63, 55/56?

Answers

Answered by maanusingh
1

Step-by-step explanation:

please cut this your sekf urgent work coming

Attachments:
Answered by pulakmath007
0

\displaystyle \sf{ LCM \: of \:  \:  \frac{10}{21}   \: , \:  \frac{20}{63} \:,  \:   \frac{55}{56} } =  \frac{220}{7}

Given :

\displaystyle \sf{ \frac{10}{21}   \: , \:  \frac{20}{63} \:,  \:   \frac{55}{56} }

To find :

\displaystyle \sf{ LCM \: of \:  \:  \frac{10}{21}   \: , \:  \frac{20}{63} \:,  \:   \frac{55}{56} }

Solution :

Step 1 of 3 :

Find LCM of 10 , 20 , 55

We first prime factorise the given numbers

10 = 2 × 5

20 = 2 × 2 × 5

55 = 5 × 11

LCM of 10 , 20 , 55

= 2 × 2 × 5 × 11

= 220

Step 2 of 3 :

Find HCF of 21 , 63 , 56

We first prime factorise the given numbers

21 = 3 × 7

63 = 3 × 3 × 7

56 = 2 × 2 × 2 × 7

HCF of 21 , 63 , 56 = 7

Step 3 of 3 :

Find the required LCM

\displaystyle \sf{ LCM \: of \:  \:  \frac{10}{21}   \: , \:  \frac{20}{63} \:,  \:   \frac{55}{56} }

\displaystyle \sf{  =  \frac{LCM  \: of \:  \:  10 , 20 , 55}{HCF \:  of \:  \:  21 , 63 , 56}  }

\displaystyle \sf{   =  \frac{220}{7} }

Similar questions