What is the laplace transform of f(t)=sin2t at the parameter p=0
Answers
Answered by
1
Given:
f(t)=sin2t at the parameter p=0
To find:
What is the laplace transform of f(t)=sin2t at the parameter p=0
Solution:
From given, we have,
f(t)=sin2t
The Laplace Transform is given by,
L[sin 2t]
= lim (N→∞) ∫ 0 to N e^{-st} sin (2t) dt
∫ 0 to N e^{-st} sin (2t) dt = -1/s [e^{-st} sin (2t)]_0^N - 2/s² [e^{-st} cos (2t)]_0^N - 2²/s² ∫ 0 to N e^{-st} sin (2t) dt
(1 + a²/s²) ∫ 0 to N e^{-st} sin (2t) dt = -1/s [e^{-st} sin (2t)]_0^N - 2/s² [e^{-st} cos (2t)]_0^N
(s² + 2²)/s² ∫ 0 to ∞ e^{-st} sin(2t) dt = 2/s²
∴ L[sin (2t)] = 2/(s²+4)
Similar questions