Math, asked by wwwrittikaghosh321, 3 days ago

what is the length of a cuboid having breadth and height equal to 4cm and 6cm respectively,and the total surface area of 148cm²​

Answers

Answered by pavanadevassy
25

Answer:

The length of the cuboid is 5 cm.

Step-by-step explanation:

The total surface area of a cuboid with length  l, breadth b and height h is given by the formula,

Total\ surface\ area(TSA)=2(lb+bh+lh)

Given that, the cuboid has a breadth of 4 cm, a height of 6 cm, and a total surface area of 148 cm^2. Substitute the values in the formula, we get,

148=2(l\times 4+4\times 6+l\times 6)\\\\\implies 148= 2(4l+24+6l) \\\\\implies  \dfrac{148}{2}=10l+24\\\\ \implies 74= 10l+24\\\\\implies 10 l =74-24=50\\\\\implies l= 5

So the length of the cuboid is 5 cm.

Answered by Anonymous
27

\bf \bigstar \:  \underline{Information  \: provided  \: in  \: question:}

 \rm \star \:Breadth \: of  \: Cuboid  = 4 \: cm

\rm \star \:  Height \: of  \: Cuboid  = 6\: cm

\rm \star \: Surface  \: area \: of  \: Cuboid  = 148 \:  {cm}^{2}

\bf \bigstar \:  \underline{What  \: we \:   \: have  \: to \:  calculate:}

\rm \star \:  Length\: of  \: Cuboid  :

 \bf \bigstar \:  \underline{We \:  know  \: that} :

\rm \implies\: Surface  \: area \: of  \: Cuboid    :

 \rm \implies {\: 2 \times (l \: b + b \: h + l \: h)}

\bf \bigstar \:  \underline{Consider} :

\rm{Assume \:  that \:  length \:  be \:  x}

\bf \bigstar \:  \underline{So} :

 \rm \implies \: 148 \:  {cm}^{2}  = 2 \times (4 \: x + 6 \: x + 6 \times 4)

\rm \implies \: 148 \:  {cm}^{2}  = 2 \times (10 \: x + 24)

\rm \implies \: 148 \:  {cm}^{2}  = (20 \: x + 48)

 \rm \implies \: 20\: x = 148 - 48

\rm \implies \: 20\: x = 100

\rm \implies \:x =  \dfrac{100}{20}

\rm \implies \:x =5 \: cm

\bf \bigstar \:  \underline{Therefore} :

\rm{ \therefore Length  \: of \:  Cuboid  \: is \:  5 cm }</p><p>

\bf \bigstar \:  \underline{Verification}:

\rm \implies\: Surface  \: area \: of  \: Cuboid   :

\rm \implies {\: 2 \times (l \: b + b \: h + l \: h)}

\rm \implies \: 148 \:  {cm}^{2}  = 2 \times (4  \times  5 + 6  \times 5+ 6 \times 4)

\rm \implies \: 148 \:  {cm}^{2}  = 2 \times (20 + 30 + 24)

\rm \implies \: 148 \:  {cm}^{2}  = 2 \times (74)

\rm \implies \boxed{ \: 148 \:  {cm}^{2}  = 148 \:  {cm}^{2}}

\bf \bigstar \:  \underline{Hence  \: Verified}:

Similar questions