Math, asked by aylab4813, 10 months ago

What is the length of each side of an equilateral triangle having an area of 4 underroot 3square cm

Answers

Answered by EliteSoul
79

AnswEr:-

Length of each side = 4 cm

\rule{200}{1}

⋆ DIAGRAM:-

\setlength{\unitlength}{0.78 cm}\begin{picture}(12,4)\thicklines\put(5.4,5.8){$A$}\put(11.2,5.8){$B$}\put(8.4,10){$C$}\put(6,6){\line(2,3){2.5}}\put(11,6){\line(-2,3){2.5}}\put(6,6){\line(1,0){5}}\put(5,7.9){$4\:cm$}\put(11,7.9){$4\:cm$}\put(8,5){$4\:cm$}\end{picture}

Given:-

  • Area of equilateral∆ = 43 cm²

To find:-

  • Side of equilateral = ?

Solution:-

As the triangle is equilateral, we know:-

\boxed{\boxed{\sf\blue{Area \: of \: equilateral \: \triangle = \dfrac{\sqrt{3}}{4}\: a^2 }}}

Here, a = length of each equal sides.

  • Putting values:-

\dashrightarrow\sf 4\sqrt{3} = \dfrac{\sqrt{3}}{4}\: a^2 \\\\\dashrightarrow\sf \dfrac{\sqrt{3}a^2}{4} = 4\sqrt{3} \\\\\dashrightarrow\sf a^2 = 4\sqrt{3}\times \dfrac{4}{\sqrt{3}}\\\\\dashrightarrow\sf a^2 = 4 \times 4 \\\\\dashrightarrow\sf a^2 = 16 \\\\\dashrightarrow\sf a = \sqrt{16}\\\\\dashrightarrow{\boxed{\sf{a =  \large{\boxed{\sf\green{4 \: cm }}} }}}

Therefore,

Side of equilateral = 4 cm

More formulas:-

↠Area of isosceles∆ = (b/4)√(4a² - b²)

↠Area of non-equal sides ∆ = √[s(s - a)(s - b)(s - c)]

Answered by BrainlyRaaz
20

Given :

  • Area of the equilateral triangle = 4√3.

To find :

  • Length of the equilateral triangle =?

Step-by-step explanation:

Area of the equilateral triangle = 4√3. [Given]

We know that,

Area of the equilateral triangle = √3/4 side²

Substituting the values in the above formula, we get,

➟ 4√3 = √3/4 side²

➟ side² = 4√3 × 4 /√3

➟ side² = 4 × 4

➟ side² = 16

➟ side = √16

➟ side = √4× 4

➟ side = 4.

We know that the sum of the all sides of the equilateral triangle have equal lenght.

So, The length of the equilateral triangle= 4 cm.

Verification :

Area of the equilateral triangle = 4√3. [Given]

Length of the equilateral triangle = 4cm.

We know that,

Area of the equilateral triangle = √3/4 side²

Substituting the values, we get,

➟ 4√3 = √3/4 × 4²

➟ 4√3 = √3/4 × 16

➟ 4√3 = 4√3

L.H.S = R. H. S

Hence, it is verified.

Similar questions