Math, asked by bapumahale37, 2 months ago

*What is the length of hypotenuse if the sides of right angle are 6 and 8?*

1️⃣ 14 unit
2️⃣ 2 unit
3️⃣ 10 unit
4️⃣ 12 unit​

Answers

Answered by KSDheekshithanks9a
1

answer

10 unit

Step-by-step explanation:

8² is 64

6² is 36

if we add 64+36 is 100 so 10² is 100

Answered by Sen0rita
20

DIAGRAM :

\setlength{\unitlength}{1cm}\begin{picture}(6,5)\linethickness{.4mm}\put(1,1){\line(1,0){4.5}}\put(1,1){\line(0,1){3.5}}\qbezier(1,4.5)(1,4.5)(5.5,1)\put(.3,2.5){\large\bf 6}\put(2.8,.3){\large\bf 8}\put(1.02,1.02){\framebox(0.3,0.3)}\put(.7,4.8){\large\bf A}\put(.8,.3){\large\bf B}\put(5.8,.3){\large\bf C}\qbezier(4.5,1)(4.3,1.25)(4.6,1.7)\put(3.8,1.3){\large\bf $\Theta$}\end{picture}

Given : Two sides of right angled triangle are 6 units and 8 units respectively.

To Find : Length of the hypotenuse of the right angled triangle.

⠀⠀⠀⠀⠀⠀⠀⠀ ⠀⠀____________________

Here

 \:  \:

  • Perpendicular, AB = 6 units
  • Base, BC = 8 units
  • Hypotenuse, AC = ?

 \:  \:

As we know that -

 \:  \:

 \star \: \underline{\boxed{\sf\pink{AB {}^{2}  + BC {}^{2}  = AC {}^{2} }}}

 \:  \:

Now,

 \:  \:

\sf:\implies \: AB {}^{2}  + BC {}^{2}   = AC {}^{2}  \\  \\  \\ \sf:\implies \:(6) {}^{2}  + (8) {}^{2}  = AC {}^{2} \\  \\  \\ \sf:\implies \: 36 + 64 = AC {}^{2} \\  \\  \\ \sf:\implies \: 100 = AC {}^{2} \\  \\  \\ \sf:\implies \: AC =  \sqrt{100}  \\  \\  \\ \sf:\implies \:\underline{\boxed{\mathfrak\purple{AC = 10 \: units}}} \:  \bigstar \\  \\  \\  \\  \sf \therefore{ \underline{Hence, \: the \: hypotnuse \: of \: the \: right \: angled \: triangle \: is \: \bold{10 \: units}.}}


Anonymous: Good! :OOO
Similar questions