Math, asked by coolbudyaman, 1 year ago

what is the length of latus rectum of ellipse 8x^2-y^2=64

Answers

Answered by BrainlyConqueror0901
2

COORECT QUESTION :

what is the length of latus rectum of hyperbola 8x^2-y^2=64.

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Latus\:rectum(LL')=2\:units}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green {\underline \bold{Given : }} \\   \tt{ : \implies Eqn \: of \: hyperbola = 8{x}^{2}- {y}^{2}   = 64} \\  \\ \red {\underline \bold{To \: Find: }} \\  \tt {: \implies Length \: of \: latus \: rectum (LL')=?}

• According to given question :

 \tt {:  \implies  {8x}^{2}  - {y}^{2}  = 64} \\  \\    \tt{: \implies  \frac{8x^{2} }{64} -  \frac{ {y}^{2} }{64} = 1 } \\  \\   \tt{ : \implies   \frac{ {x}^{2} }{ \frac{64}{8} }   +  \frac{ {y}^{2} }{ \frac{64}{1} }  = 1} \\  \\   \tt{: \implies  \frac{ {x}^{2} }{8}  +  \frac{ {y}^{2} }{64}  = 1} \\   \\ \text{So, \: it \: is \: in \: the \: form \: of}  \\  \tt{\to  \frac{ {x}^{2} }{ {a}^{2} }   - \frac{ {y}^{2} }{ {b}^{2} } = 1}  \\  \\  \bold{Where : } \\   \tt{\circ  \:  {a}^{2}  =  8} \\   \\   \tt{\circ \:  {b}^{2}  = 64} \\  \\  \bold{As \: we \: know \: that}  \\    \tt{ :  \implies Latus \: rectum =  \frac{2 {a}^{2}  }{b} } \\   \\  \text{Putting \: given \: values} \\ \tt{ :  \implies Latus \: rectum =  \frac{2 \times 8}{8} } \\  \\  \green{\tt{ :  \implies Latus \: rectum =  2\:units}}

Similar questions