Math, asked by ronak3796, 1 year ago

what is the length of the diagonal AG in the cuboid shown

Attachments:

Answers

Answered by TooFree
4

AD = 8 cm (Given)

DC = 6 cm (Given)

AE = 2cm (Given)


ΔADC forms a right angle triangle

Find Length AC:

AC² = AD² + DC²

AC² = 8² + 6²

AC² = 64 + 36

AC² = 100

AC = √100

AC = 10 cm


ΔAEG forms a right angle triangle

Find AG:

AG² = AE² + AD²

AG² = 2² + 10²

AG² = 4 + 100

AG² = 104

AG = 2√26 cm or 10.2 cm


Answer: The length of the diagonal, AG, is 2√26 cm


------------------------------------------------------------------------------------------

ALTERNATIVE METHOD:

\text{Length of diagonal = } \sqrt{l^{2}+b^{2}+h^{2}}

\text{AG = } \sqrt{ (8)^{2}+(6)^{2}+(2)^{2} }

\text{AG = } 2\sqrt{26} \text { units}


Answer: The length of the diagonal, AG, is 2√26 cm

Answered by Ramlayaksingh3
5
\huge{\bold{\boxed{\boxed{\color{red}{Answer:-}}}}}

Given,length,l=8cm

Breadth,b=6cm

And ,Height,h=2cm

We know that length of diagonal of a Cuboid

=\bold{\sqrt{l^{2}+b^{2}+h^{2}}}

=\sqrt{8^{2}+6^{2}+2^{2}}

=\sqrt{64+36+4}

=\sqrt{104}

=10.19\:cm

❤hope it helps you ❤

#Be Brainly
Similar questions