Math, asked by harkamal625, 3 months ago

what is the length of the side of a cube of volume 1.728 m cube​

Answers

Answered by Anonymous
4

Given:-

  • Volume of a cube is 1.728 m.

To find:-

  • Length of the side of a cube.

Solution:-

Here,

  • Volume = 1.728 m

Formula used:-

Volume of cube = a³

→ a³ = 1.728

→ a = 3√1.728

a = 1.2 m

Hence,

  • the length of the side of a cube is 1.2 m.

More Formulas:-

→ Area of rectangle = length × breadth sq.units

→ Perimeter of square = 4 × side units

→ Area of square = side × side sq.units

→ Perimeter of circle = 2πr units

→ Area of circle = πr² sq.units

→ Perimeter of parallelogram = 2 × (a + b) units

→ Area of parallelogram = base × height sq.units

→ Perimeter of rhombus = 4 × side units

→ Area of rhombus = 1/2 × diagonal (1) × diagonal (2) sq.units

→ Perimeter of equilateral triangle = 3 × side units

→ Area of equilateral triangle = √3/4 × a² = 1/2 × side × height sq.units

→ Perimeter of trapezoid = (Sum of all sides) units

→ Area of trapezoid = 1/2 × height × (sum of parallel sides) sq.units

Answered by Anonymous
6

Correct Question-:

  • What is the length of the side of a cube of volume 1.728 m³.

AnswEr-:

  • \underline{\boxed{\star{\sf{\blue{ Length\:of\:Side\:of\:a\:cube\:is\:1.2m}}}}}

EXPLANATION-:

  •  \frak{Given \:\: -:} \begin{cases} \sf{ The\:Volume \:of\:a\:cube\:1.728m³}\end{cases} \\\\

  •  \frak{To \:Find\: -:} \begin{cases} \sf{ The\ length\:of\:Side\:of\:a\:Cube.}\end{cases} \\\\

Now ,

  • \underline{\boxed{\star{\sf{\blue{ Volume \:of\:Cube\:= Side × Side × Side \:or\:Side^{3}}}}}}

  •  \frak{Here \:\: -:} \begin{cases} \sf{ The\:Volume \:of\:a\:cube\:1.728m³}& \\\\ \sf{ Length \:of\:Side\:of\:a\:cube\:=\: ??}\end{cases} \\\\

Now ,

  • \implies{\sf{\large { Side × Side × Side = 1.728m³  }}}
  • \implies{\sf{\large { Side ³ = 1.728m³  }}}
  • \implies{\sf{\large {  Side = \sqrt{3}{1.728}  }}}
  • \implies{\sf{\large { Side  = 1.2m  }}}

Hence ,

  • \underline{\boxed{\star{\sf{\blue{ Length\:of\:Side\:of\:a\:cube\:is\:1.2m}}}}}

Figure Related to this answer -:

\setlength{\unitlength}{4mm}\begin{picture}(10,6)\thicklines\put(0,1){\line(0,1){10}}\put(0,1){\line(1,0){10}}\put(10,1){\line(0,1){10}}\put(0,11){\line(1,0){10}}\put(0,11){\line(1,1){5}}\put(10,11){\line(1,1){5}}\put(10,1){\line(1,1){5}}\put(0,1){\line(1,1){5}}\put(5,6){\line(1,0){10}}\put(5,6){\line(0,1){10}}\put(5,16){\line(1,0){10}}\put(15,6){\line(0,1){10}}\put(4.6,-0.5){\bf\large 1.2 m}\put(13.5,3){\bf\large 1.2 m}\put(-4,5.8){\bf\large 1.2m}\end{picture}

______________________________________

♤ Formula for area of Some shapes ♤

\boxed{\begin {minipage}{9cm}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Breadth\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}p\sqrt {4a^2-p^2}\\ \\ \star\sf Parallelogram =Breadth\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {minipage}}

____________________♡_________________

Similar questions