Math, asked by ajeeb5002, 1 year ago

What is the limit of (2−x)2(3−x)2(1−x)(2−x2)2 as x goes to infinity?


saltywhitehorse: please write the question properly

Answers

Answered by akku833
0

Divide by highest power of x:

2

+

1

x

2

4

x

2

1

lim

x

2

+

1

x

2

4

x

2

1

=

2

+

0

0

1

=

2


priyaswaminathan2004: Ok??
akku833: of course
priyaswaminathan2004: Hmm not today tmrw
akku833: ohk
priyaswaminathan2004: Ok fine
akku833: I'm busy now.. plzz don't mind
akku833: byee love you
priyaswaminathan2004: Ok bye
akku833: hii
priyaswaminathan2004: Hi
Answered by FelisFelis
0

Answer:

\lim_{x \to \infty}( 2 - x )^2( 3 - x )^2( 1 - x )( 2 - x^2)^2\,=\infty

Step-by-step explanation:

Let the function f (X) = ( 2 - x )²( 3 - x )²( 1 - x )( 2 - x² )²

To find the limit of function at infinity.

\lim_{x \to \infty}f (X)\,=\,\lim_{x \to \infty} [( 2 - x )^2( 3 - x )^2( 1 - x )( 2 - x^2)^2]

=\lim_{x \to \infty}( 2 - x )^2( 3 - x )^2( 1 - x )( 2 - x^2 )^2}

=\lim_{x \to \infty}( 2 - x )^2\lim_{x \to \infty}( 3 - x )^2\lim_{x \to \infty}( 1 - x )\lim_{x \to \infty}( 2 - x^2 )^2}

=∞

Similar questions