What is the limit of (x^n-a^n)/(x-a)?
Answers
Answered by
13
QUESTION⤵
What is the limit of (x^n-a^n)/(x-a)?
ANSWER ⤵
The answer will be na^n-1.
As (1+X)^n=1^nCo+nC1X+nC2X^2+.......nCnX^n
=lim. x^n -a^n/x-a
X➡a+
=lim. (a+h)^n - a^n/ (a+h) -a
h➡0
lim. [a(1+h/a]-a^n/h
h➡0
lim. [a^n(1+h/a] - a^n/h
h➡0
lim. a^n[(1+h/a)^n -1]/h
h➡0
lim. a^n[(1+h/a)^n -1]
h➡0
lim. a^n/h[1+ n of h/a+ n(n-1)/2! (h/a)^2+.......-1]
h➡0
lim. a^n/h[n of h/a +n(n-1)/2!(h/a)^2+......+nCn (h/a)^n]
h➡0
here, we will take h as common.
lim. a^n/h. h [n/a+n(n-1)/2!.h/a^2+....+h^n-1/a^n]
h➡0
we'll get,
a^n.n/a
n.a^n-1
Similar questions