Sociology, asked by ghghfj, 1 year ago

What is the magnitude of earth and a 6 x 10^6 kg and radius of the earth is 6.4 x 10 m.) the gravitational force between the 1 kg object on its surface? (Mass of the earth is




No Spam otherwise reported.​

Answers

Answered by super15
2

Answer:

Given:- m = 1kg, M = 6×10^24, R = 6.4×10^6

Solution:-  F= G\frac{Mm}{R {}^{2} }  \\  \\  F =   \frac{6.67 \times 10 {}^{ - 11} \times 6 \times 10 {}^{24} \times 1  }{(6.4 \times 10 {}^{6}) {}^{2}  } \\   \\F  =  \frac{6.67 \times 6 \times 10}{6.4 {}^{2} }  \\  \\F  = 9.8 \:Newton\: (approx)

Answered by OoINTROVERToO
0

\begin{gathered}\begin{gathered}⠀⠀⠀⠀\begin{gathered} \\ { { {\boxed {\rm {\blue { F = \dfrac{Gm_1m_2}{{r}^{2} }}}}}}} \\ \\ \\ \bf \: According \: to \: formula, \: \\ \\ \tt { \: F = \dfrac{6.7 \times {10}^{ - 11 } \times 6 \times {10}^{24} \times 1}{( \: 6.4 \times {10}^{6} ) {}^{2} } } \\ \\ \tt { \: F = \dfrac{ 6.7 \times {10}^{ - 11} \times 6 \times {10}^{24} \times 1 }{6.4 \times 6.4 \times {10}^{6} \times {10}^{6} } } \\ \\ \tt { \: F = \dfrac{6.7 \times6 \times {10}^{( - 11 + 24)} }{6.4 \times 6.4 \times {10}^{(6 + 6)} } } \\ \\ \tt { \: F = \dfrac{6.7 \times 6 \times {10}^{13} }{6.4 \times 6.4 \times {10}^{12} } } \\ \\ \tt { \: F = \dfrac{40.2 }{40.96} \times {10}^{(13 - 12)} } \\ \\ \tt { \: F = \dfrac{40.2 }{40.96} \times 10 } \\ \\ \tt { \: F = \dfrac{402 \: \times \: \cancel{ 10 } \: \times 100}{4096 \: \times \: \cancel{10}} } \\ \\ \tt { \: F = \cancel {\dfrac{40200}{4096} } = 9.8 \: N} \\ \\ \\ \end{gathered} \end{gathered} \end{gathered}

Therefore , magnitude of the gravitational force between the earth and 1 kg object on its surface is 9.8 Newtons.

Similar questions