Physics, asked by arumugaperumalr17, 2 months ago

what is the magnitude of the gravitational force between the earth and a 1 kilogram object on its surface?
Hint:- mass of the earth is 6×10²⁴kg and radius of the earth is 6.4×10⁶m.​

Answers

Answered by ItzDinu
13

\begin{gathered}{\Huge{\textsf{\textbf{\underline{\underline{\purple{Answer:}}}}}}}\end{gathered}

\impliesI Hope it's Helpful My Friend.

Attachments:
Answered by OoINTROVERToO
1

⠀⠀⠀⠀⠀⠀⠀⠀⠀  \\ { { {\boxed {\rm {\blue { F = \dfrac{Gm_1m_2}{{r}^{2} }}}}}}} \\  \\ \\   \bf \: According \:  to \:  formula,  \:   \\ \\ \tt {  \: F = \dfrac{6.7 \times {10}^{ - 11 } \times 6 \times {10}^{24} \times 1}{( \: 6.4 \times {10}^{6} ) {}^{2} } } \\ \\  \tt {  \: F = \dfrac{ 6.7 \times {10}^{ - 11} \times 6 \times {10}^{24} \times 1 }{6.4 \times 6.4 \times {10}^{6} \times {10}^{6} } }  \\ \\ \tt {  \: F = \dfrac{6.7 \times6 \times {10}^{( - 11 + 24)} }{6.4 \times 6.4 \times {10}^{(6 + 6)} } }  \\ \\ \tt {  \: F = \dfrac{6.7 \times 6 \times {10}^{13} }{6.4 \times 6.4 \times {10}^{12} } } \\  \\ \tt {  \: F = \dfrac{40.2 }{40.96} \times {10}^{(13 - 12)} } \\ \\  \tt {  \: F = \dfrac{40.2 }{40.96} \times 10 } \\ \\  \tt {  \: F = \dfrac{402 \: \times \: \cancel{ 10 } \: \times 100}{4096 \: \times \: \cancel{10}} }  \\ \\ \tt {  \: F = \cancel {\dfrac{40200}{4096} } = 9.8 \: N} \\  \\  \\

Therefore , magnitude of the gravitational force between the earth and 1 kg object on its surface is  9.8  Newtons

Similar questions