Physics, asked by Rihanashah, 1 month ago

What is the magnitude of the gravitational force between the earth and a 1 kg object on its surface? ( Mass of earth is 6 × 10^24 kg and radius of earth is 6.4 × 10^6 m)

Answers

Answered by ShiningBlossom
6

Given:-

  •  \sf \: G = 6.7 × 10^{-11} \:  Nm²/kg²
  •  \sf \: m_1= 6×10^{24} \:  kg
  •  \sf \: m_2 = 1  \: kg
  •  \sf \: r = 6.4× 10^{6} \:  m

Using formula, we get

 \sf \: F = G × \frac{m_1 \times m_2}{ {r}^{2} }   \\

 \sf \longrightarrow F =  \frac{6.7 \times  {10}^{ - 11}  \times 6 \times  {10}^{24} \times 1 }{(6.4 \times  {10}^{6})^{2}  }  \\

\sf \longrightarrow F =  \frac{6.7 \times  {10}^{ - 11} \times 6 \times  {10}^{24}  \times 1 }{6.4 \times  {10}^{6} \times  6.4 \times  {10}^{6} }   \\

\sf \longrightarrow F =  \frac{6.7 \times 6  \times 1 \times  {10}^{ - 11} \times  {10}^{24} \times  {10}^{ - 12}  \times 10  }{6.4 \times 6.4}  \\

\sf \longrightarrow F =  \frac{67 \times 6 \times 10 \times 10}{64 \times 64}  \\

\sf \longrightarrow F =  \frac{4020 \times  {10}^{1} }{4090}  \\

\sf \longrightarrow F = 0.98145 \times  {10}^{1}

\sf \longrightarrow F = 9.8 \: m/ {s}^{2}

ㅤㅤㅤ

Thus, the magnitude of gravitational force between the earth and a 1 kg object on its surface is 9.8 Newtons.

\rule{300px}{.3ex}

Answered by Anonymous
1

Given:-

  • Mass of earth m1 =6 × 1024 kg
  • Mass of the object m2 = 1 kg
  • The radius of the earth =6.4 × 106 m
  • Universal gravitational constant G = 6.67 x 10-11 Nm2kg-2

Find out:-

  • The magnitude of the gravitational force between the earth and a 1 kg object on its surface

Solution:-

By applying universal law of gravitation: – F = (G m1 m2/r2)

= (6.67 x 10-11 x 6 × 1024 x 1)/ (6.4 × 106)2

F = 9.8 N

Answer:-

The magnitude of the gravitational force between the earth and a 1 kg object on its surface is F= 9.8N

 \sf

Similar questions