Math, asked by darthvader07, 1 month ago

what is the mean mode and median of 22,32,34,35,36,39?​

Answers

Answered by 12thpáìn
336

Given Numbers

  • 22,32,34,35,36,39

To find

  • mean, median and mode

Mean

Formula used

 \\\pink{ \boxed{ \sf{{Mean=\cfrac{Sum \: of \: all \:  observations}{Total \:  Number \:  of  \: Observations}}}}}\\

\sf{→Mean=\dfrac{22+32+34+35+36+39}{6}}

\sf{→Mean=\dfrac{198}{6}}

\sf{→Mean=33}\\\\

Median

  • 22,32,34,35,36,39

We can see that number of observation (n) is even.

Formula used

\\\begin{gathered} \sf{Median}\begin{cases}\sf{\:\;\; value \:  of \: \left( \frac{n+1}{2}\right)^{th} observations \: if  \: n \: is  \: odd} \\ \\\sf{\;\;\;  \cfrac{value \:  of \: \left( \frac{n}{2}\right)^{th} observations  + value \:  of \: \left( \frac{n+1}{2}\right)^{th} observations} {2}\ if \ n \ is \ odd}\end{cases}\end{gathered}

{ →\sf{Median=  \:   \dfrac{\left(\frac{6}{2} \right)th \: term  +  \: \left(\frac{6 + 2}{2}   \right)th \: term}{2}}}

{ →\sf{Median=  \:   \dfrac{\left(3 \right)th \: term  +  \: (4) \: th \: term}{2}}}

{ →\sf{Median=  \:   \dfrac{34 +  \: 35 }{2}}}

{ →\sf{Median=  \:   \dfrac{69}{2}}}

{→ \sf{Median=  \: 34.5}}\\\\

Mode

  • 22,32,34,35,36,39

Formula used

\\\pink{\boxed{\sf Mode= 3 Median-2 Mean }}

\\ →\sf Mode= (3×34.5)-(2×33)

\sf→ Mode= 103.5-66

\sf →Mode= 37.5 \\  \\  \\

  • Mean of the observation= 33.
  • Median of the observation=34.5.
  • Mode of the observation= 37.5
Similar questions
Math, 24 days ago