Math, asked by ni14920914tin, 11 months ago

What is the min and the max value of y=(2x-1)^3+3 by the derivative method

Answers

Answered by shadowsabers03
2

Given,

\longrightarrow\sf{y=(2x-1)^3+3\quad\quad\dots(1)}

For finding value of \sf{x} at which \sf{y} is maximum or minimum, its derivative should be equated to zero.

\longrightarrow\sf{y'=0}

\longrightarrow\sf{\dfrac{d}{dx}\,[(2x-1)^3+3]=0}

\longrightarrow\sf{\dfrac{d[(2x-1)^3]}{d[2x-1]}\cdot\dfrac{d[2x-1]}{dx}+\dfrac{d}{dx}(3)=0}

\longrightarrow\sf{3(2x-1)^2\cdot2=0}

\longrightarrow\sf{6(2x-1)^2=0}

\longrightarrow\sf{(2x-1)^2=0}

\longrightarrow\sf{2x-1=0}

\longrightarrow\sf{x=\dfrac{1}{2}}

Since \sf{x} has only one value, \sf{y} has only one stationary point hence it has no maxima nor minima.

From (1),

\longrightarrow\sf{y=\left(2\times\dfrac{1}{2}-1\right)^3+3}

\longrightarrow\sf{y=3}

Hence the stationary point is \bf{\left(\dfrac{1}{2},\ 3\right)}

Similar questions