Physics, asked by rachana291002, 6 months ago

What is the minimum and maximum resistance can be obtained by using the identical resistor of resistance of (1/5) Ω.​

Answers

Answered by ExᴏᴛɪᴄExᴘʟᴏʀᴇƦ
2

☯ Minimum Resistance : 0.04Ω

☯ Maximum Resistance: 1Ω

Answer

  • We have Five resistors of ⅕ Ω each
  • Maximum Resistance = ?
  • Minimum Resistance = ?

━━━━━━━━━━━━━━

  • We know that we can obtain the maximum resistance when they are connected in series and the minimum resistance when they are connected in parallel

\displaystyle\underline{\bigstar\:\textsf{Minimum Resistance :}}

\sf\dashrightarrow \dfrac{1}{R_{eq}} = \dfrac{1}{R_1} + \dfrac{1}{R_2} + \dfrac{1}{R_3}.... + \dfrac{1}{R_n}

\sf\dashrightarrow \dfrac{1}{R_{eq}} = \bigg\lgroup\dfrac{1}{1/5}+\dfrac{1}{1/5}+\dfrac{1}{1/5}+\dfrac{1}{1/5}+\dfrac{1}{1/5}\bigg\rgroup\\

\sf\dashrightarrow \dfrac{1}{R_{eq}} = \bigg\lgroup\dfrac{5}{1}+\dfrac{5}{1}+\dfrac{5}{1}+\dfrac{5}{1}+\dfrac{5}{1}\bigg\rgroup\\

\sf\dashrightarrow \dfrac{1}{R_{eq}} = \dfrac{25}{1}\\

\sf\dashrightarrow R_{eq} = \dfrac{1}{25}\\

\sf\dashrightarrow\underline{\boxed{\red{\mathfrak{r_{eq} = 0.04 \ \Omega}}}}

\displaystyle\underline{\bigstar\:\textsf{Minimum Resistance :}}

\sf\dashrightarrow R_{eq} = R_1+R_2+R_3....+R_n\\

\sf\dashrightarrow R_{eq} = \dfrac{1}{5} + \dfrac{1}{5} + \dfrac{1}{5} + \dfrac{1}{5} + \dfrac{1}{5}\\

\sf\dashrightarrow R_{eq} = \dfrac{1+1+1+1+1}{5}\\

\sf\dashrightarrow R_{eq} = \dfrac{5}{5}\\

\dashrightarrow \underline{\boxed{\pink{\mathfrak{r_{eq} = 1 \Omega}}}}

Similar questions