Physics, asked by sangita177, 1 year ago

What is the minimum energy required to launch a satellite of mass m from the surface of a planet of mass M and radius R in a circular orbit at an altitude of 2R?​

Answers

Answered by Nєєнα
15

Explanation:

The kinetic energy at altitude 2R=GMm6R

The gravitational potential energy at altitude

2R=−GMm3R

Total energy =k∈+PE=−GMm6R

Potential energy at the surface is −GMmR

∴ Req. kinetic energy =GMmR−GMm6R

= 5GMm6R

hope it helps u......❣️

Answered by Anonymous
0

ANSWER~

Answer

Given that,

Mass of satellite =m=m

Mass of planet =M=M

Radius =R=R

Altitude h=2Rh=2R

Now,

The gravitational potential energy

P.E=\dfrac{-Gm}{r}P.E=

r

−Gm

Potential energy at altitude =\dfrac{GmM}{3R}=

3R

GmM

Orbital velocity {{v}_{0}}=\dfrac{GmM}{R+h}v

0

=

R+h

GmM

Now, the total energy is

{{E}_{f}}=\dfrac{1}{2}mv_{0}^{2}-\dfrac{GmM}{3R} E

f

=

2

1

mv

0

2

3R

GmM

{{E}_{f}}=\dfrac{1}{2}\dfrac{GmM}{3R}-\dfrac{GMm}{3R} E

f

=

2

1

3R

GmM

3R

GMm

{{E}_{f}}=\dfrac{GmM}{3R}\left[ \dfrac{1}{2}-1 \right] E

f

=

3R

GmM

[

2

1

−1]

{{E}_{f}}=\dfrac{-GmM}{6R} E

f

=

6R

−GmM

Now, {{E}_{i}}={{E}_{f}}E

i

=E

f

Now, the minimum required energy

K.E=\dfrac{Gmm}{R}-\dfrac{GmM}{6R} K.E=

R

Gmm

6R

GmM

K.E=\dfrac{5GmM}{6R} K.E=

6R

5GmM

Hence, the minimum required energy is \dfrac{5GmM}{6R}

6R

5GmM

Similar questions