Math, asked by liptijena123, 11 months ago

what is the minimum value of x2+x+1​

Answers

Answered by BendingReality
5

Answer:

\displaystyle \sf \longrightarrow x=-\frac{1}{2} \\

Step-by-step explanation:

Let say :

\displaystyle \sf y=x^2+x+1 \\ \\

We know to find minimum value of y first derivative should be zero!

\displaystyle \sf \longrightarrow \frac{dy}{dx}=0 \\ \\

Now :

\displaystyle \sf y=x^2+x+1 \\ \\

Diff. w.r.t. x :

\displaystyle \sf \longrightarrow \frac{dy}{dx}=\frac{d}{dx}\left(x^2+x+1\right)=0 \\ \\

\displaystyle \sf \longrightarrow \frac{d}{dx}\left(x^2\right)+ \frac{d}{dx}\left(x\right)+ \frac{d}{dx}\left(1\right)=0 \\ \\

\displaystyle \sf \longrightarrow 2x+1=0\\ \\

\displaystyle \sf \longrightarrow x=-\frac{1}{2} \\ \\

Hence we get required answer!

Similar questions