Math, asked by praveenmakode380, 2 months ago

what is the moduli and arguments of this problam 3-i/2+i + 3+i/2-i​

Answers

Answered by varadad25
5

Answer:

The modulus and argument of the given complex number are 2 units & 0 radian respectively.

Step-by-step-explanation:

We have given a complex number.

We have to find its modulus and argument.

The given complex number is

\displaystyle{\sf\:z\:=\:\dfrac{3\:-\:i}{2\:+\:i}\:+\:\dfrac{3\:+\:i}{2\:-\:i}}

\displaystyle{\implies\sf\:z\:=\:\dfrac{(\:3\:-\:i\:)\:(\:2\:-\:i\:)\:+\:(\:3\:+\:i\:)\:(\:2\:+\:i\:)}{(\:2\:+\:i\:)\:(\:2\:-\:i\:)}}

\displaystyle{\implies\sf\:z\:=\:\dfrac{3\:(\:2\:-\:i\:)\:-\:i\:(\:2\:-\:i\:)\:+\:3\:(\:2\:+\:i\:)\:+\:i\:(\:2\:+\:i\:)}{2^2\:-\:(\:i\:)^2}}

\displaystyle{\implies\sf\:z\:=\:\dfrac{6\:-\:\cancel{3i}\:-\:\cancel{2i}\:+\:i^2\:+\:6\:+\:\cancel{3i}\:+\:\cancel{2i}\:+\:i^2}{4\:-\:(\:-\:1\:)}}

\displaystyle{\implies\sf\:z\:=\:\dfrac{6\:+\:6\:+\:2i^2}{4\:+\:1}}

\displaystyle{\implies\sf\:z\:=\:\dfrac{12\:-\:2}{5}}

\displaystyle{\implies\sf\:z\:=\:\cancel{\dfrac{10}{5}}}

\displaystyle{\implies\pink{\sf\:z\:=\:2\:+\:0i\:}}

Now, we know that,

\displaystyle{\sf\:|\:z\:|\:=\:\sqrt{a^2\:+\:b^2}}

\displaystyle{\implies\sf\:|\:z\:|\:=\:\sqrt{2^2\:+\:0^2}}

\displaystyle{\implies\sf\:|\:z\:|\:=\:\sqrt{4}}

\displaystyle{\implies\underline{\boxed{\red{\sf\:|\:z\:|\:=\:2\:units\:}}}}

Now,

\displaystyle{\sf\:\arg\:z\:(\:\theta\:)\:=\:\tan^{-1}\:\left(\:\dfrac{b}{a}\:\right)}

\displaystyle{\implies\sf\:\arg\:z\:=\:\tan^{-1}\:\left(\:\dfrac{0}{2}\:\right)}

\displaystyle{\implies\sf\:\arg\:z\:=\:\tan^{-1}\:0}

\displaystyle{\implies\underline{\boxed{\red{\sf\:\arg\:z\:=\:0\:rad\:}}}}

∴ The modulus and argument of the given complex number are 2 units & 0 radians respectively.

Similar questions