Math, asked by swaroopbaad6132, 7 months ago

what is the modulus of 1/1+3i - 1/1-3i​

Answers

Answered by pulakmath007
20

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

If z = a + ib is a complex number then modulus of z is given by

 \sf{ \:   |z|  =  |a + ib|  =  \sqrt{ {a}^{2} +  {b}^{2}  } \: }

TO DETERMINE

The modulus of the complex number

 \displaystyle \sf{  \frac{1}{1 + 3i}  -  \frac{1}{1 - 3i} \: }

CALCULATION

 \displaystyle \sf{  \frac{1}{1 + 3i}  -  \frac{1}{1 - 3i} \: }

 =  \displaystyle \sf{  \frac{(1 - 3i) - (1 + 3i)}{(1 + 3i \: )(1 - 3i)} \: }

 =  \displaystyle \sf{  \frac{1 - 3i - 1  -  3i}{ {(1)}^{2}  -  {(3i)}^{2} } \: }

 =  \displaystyle \sf{  \frac{- 6i }{ 1  - 9 {i}^{2} } \: }

 =  \displaystyle \sf{  \frac{- 6i }{ 1  + 9} \: }

 =  \displaystyle \sf{   - \frac{6i }{ 10} \: }

 =  \displaystyle \sf{   - \frac{3i }{5} \: }

So

  \bigg | \: \displaystyle \sf{  \frac{1}{1 + 3i}  -  \frac{1}{1 - 3i} \: }  \: \bigg |

 =  \displaystyle \sf{  \bigg | - \frac{3i }{5} \:  \:  \bigg|  }

 =  \displaystyle \sf{  \frac{3 }{5} \: }

Similar questions