What is the momentum four-vector for the photons in the lab frame, higgs decay?
Answers
Answered by
0
ANSWER }
If two photons with energies E1E1 and E2E2 collide, with their trajectories making an angle θθ. Is the following right about individual initial 4-momentums and total initial 4-momentum? and how do we find the four-momentum in the center of momentum frame(COM)?
Attempt at Answer:(assuming without loss of generality that particle 1 is moving in + x direction and the whole motion is in x-y plane)
- The initial momentum for each particle is:
pμ1=(E1,E1,0,0)pμ2=(E2,−E2cosθ,E2sinθ,0)p1μ=(E1,E1,0,0)p2μ=(E2,−E2cosθ,E2sinθ,0)
hence the total initial momentum is:
pμT=(E1+E2,E1−E2cosθ,E2sinθ,0)pTμ=(E1+E2,E1−E2cosθ,E2sinθ,0)
- squared length of 4-momentum in lab frame (LBF):
(pTμpμT)LBF=(E1+E2)2−(E1−E2cosθ)2−(E2sinθ)2=2E1E2(1+cosθ)(pTμpTμ)LBF=(E1+E2)2−(E1−E2cosθ)2−(E2sinθ)2=2E1E2(1+cosθ)
- square 4-momentum in COM = square length of 4-momentum in LBF:
(pTμpμT)LBF=(pTμpμT)COM=2E1E2(1+cosθ)(pTμpTμ)LBF=(pTμpTμ)COM=2E1E2(1+cosθ)
Now to find the actual momentum in COM I use the above fact that square of the total four momentum is invariant under frame transformation and combining this with the fact that the square of 4-momentum of photon is zero we get:
pμ1(COM)=(E′,E′x,E′y,0)pμ2(COM)=(E′,−E′x,−E′y,0)p1(COM)μ=(E′,Ex′,Ey′,0)p2(COM)μ=(E′,−Ex′,−Ey′,0)
-So the total 4-momentum in COM is:
pμT(COM)=(2E′,0,0,0)pT(COM)μ=(2E′,0,0,0)
squaring it and equating to sqr of total 4-momentum in COM its gives:
E′2=E1E22(1+cosθ)=E1E2cos2θ2E′2=E1E22(1+cosθ)=E1E2cos2θ2
As I have the magnitude and I know that
E′2x+E′2y=E1E2cos2θ2Ex′2+Ey′2=E1E2cos2θ2
its evident that the two components will have the following form:
E′x=E1E2−−−−−√cosθ2cosθ′E′y=E1E2−−−−−√cosθ2sinθ′Ex′=E1E2cosθ2cosθ′Ey′=E1E2cosθ2sinθ′
Question: The way to find the angle θ′θ′ is using Lorentz boost matrix such that the spatial components of four momentum go to zero.
If two photons with energies E1E1 and E2E2 collide, with their trajectories making an angle θθ. Is the following right about individual initial 4-momentums and total initial 4-momentum? and how do we find the four-momentum in the center of momentum frame(COM)?
Attempt at Answer:(assuming without loss of generality that particle 1 is moving in + x direction and the whole motion is in x-y plane)
- The initial momentum for each particle is:
pμ1=(E1,E1,0,0)pμ2=(E2,−E2cosθ,E2sinθ,0)p1μ=(E1,E1,0,0)p2μ=(E2,−E2cosθ,E2sinθ,0)
hence the total initial momentum is:
pμT=(E1+E2,E1−E2cosθ,E2sinθ,0)pTμ=(E1+E2,E1−E2cosθ,E2sinθ,0)
- squared length of 4-momentum in lab frame (LBF):
(pTμpμT)LBF=(E1+E2)2−(E1−E2cosθ)2−(E2sinθ)2=2E1E2(1+cosθ)(pTμpTμ)LBF=(E1+E2)2−(E1−E2cosθ)2−(E2sinθ)2=2E1E2(1+cosθ)
- square 4-momentum in COM = square length of 4-momentum in LBF:
(pTμpμT)LBF=(pTμpμT)COM=2E1E2(1+cosθ)(pTμpTμ)LBF=(pTμpTμ)COM=2E1E2(1+cosθ)
Now to find the actual momentum in COM I use the above fact that square of the total four momentum is invariant under frame transformation and combining this with the fact that the square of 4-momentum of photon is zero we get:
pμ1(COM)=(E′,E′x,E′y,0)pμ2(COM)=(E′,−E′x,−E′y,0)p1(COM)μ=(E′,Ex′,Ey′,0)p2(COM)μ=(E′,−Ex′,−Ey′,0)
-So the total 4-momentum in COM is:
pμT(COM)=(2E′,0,0,0)pT(COM)μ=(2E′,0,0,0)
squaring it and equating to sqr of total 4-momentum in COM its gives:
E′2=E1E22(1+cosθ)=E1E2cos2θ2E′2=E1E22(1+cosθ)=E1E2cos2θ2
As I have the magnitude and I know that
E′2x+E′2y=E1E2cos2θ2Ex′2+Ey′2=E1E2cos2θ2
its evident that the two components will have the following form:
E′x=E1E2−−−−−√cosθ2cosθ′E′y=E1E2−−−−−√cosθ2sinθ′Ex′=E1E2cosθ2cosθ′Ey′=E1E2cosθ2sinθ′
Question: The way to find the angle θ′θ′ is using Lorentz boost matrix such that the spatial components of four momentum go to zero.
Similar questions