Math, asked by nasreenc9604, 9 hours ago

what is the nature roots of quadratic equation 4x²-21 = 3x²-x-11?

Answers

Answered by Anonymous
10

Given:-

\red{➤}\:\sf Given \: Quadratic\: equation\: is-

\sf \: 4x²-21 =  3x²-x-11

\\

To Find:-

\orange{☛}\:\sf Nature\: of\: root \: Quadratic \: equation

\\

Solution:-

\underline{\bf{Simplyfying\: quadratic\:equation}}

\begin{gathered}\\\quad\longrightarrow\quad\sf 4x²-21 = 3x²-x-11 \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad\sf 4x²-21-3x²+x+11 = 0 \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad\sf 4x²-3x²+x-21+11=0 \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad \boxed{\sf{x²+x-10=0}} \\\end{gathered}

\underline{\large\bf{Finding\: Discriminant}}

\underline{\bf\pink{Formula\: Used-}}

\green{ \underline { \boxed{ \sf{D= b^2-4ac}}}}

where

  • \sf D =Discriminant
  • \sf a =coefficient\: of  \: x^2
  • \sf b =coefficient\: of  \: x
  • \sf c =Constant

Comparing,

\sf Here\: a=1,b=2 \:and\: c=-10

Putting Values-

\begin{gathered}\\\quad\longrightarrow\quad \sf D= b^2-4ac \\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad \sf D= (1)^2-4×1×(-10)\\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad \sf D= 1-(-40)\\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad \sf D= 1+40\\\end{gathered}

\begin{gathered}\\\quad\longrightarrow\quad \sf D= 41\\\end{gathered}

\underline{\bf\red{Ans }}-\sf {Since,D>0  \: the \:  roots  \: are \:  real  \: and \:  unequal.}

Note-

  • If D < 0 , roots are imaginary
  • If D = 0 , roots are real and equal
Similar questions