What is the nth derivative of tan inverse of (x/a) ?
Answers
Answered by
30
y = Tan⁻¹ (x/a)
The formula for nth derivative is proved by Mathematical induction process.
Formula:
The formula for the n-th derivative of y = arctan (x), is proved by induction.
[tex] \frac{d^n}{dx^n}tan^{-1}x=\frac{(-1)^{n-1}(n-1)!}{(1+x^2)^{\frac{n}{2}}}Sin[n\ sin^{-1}(\frac{1}{\sqrt{1+x^2}})],\\\\ for\ n=1,2,3,4,5.....\ eq\ (1)\\\\let\ sin\phi=\frac{1}{\sqrt{1+x^2}},\ \ so\ cos\phi=\frac{x}{\sqrt{1+x^2}},\\\\ cos\phi\ d\phi=-\frac{2x\ dx}{2(1+x^2)^\frac{3}{2}} \ \ \ \frac{d\phi}{dx}=-sin^2\phi \\\\ So\ (1) : y_x^n = (-1)^{n-1}(n-1)! \ Sin^n \phi\ Sin (n\phi)\ ....\ eq\ (2)[/tex]
Let (2) be true for n = k.
[tex] Differentiate\ y^k_x\ wrt\ x.\\\\ y^{k+1}_x=(-1)^{k-1}(k-1)!\ [k\ sin^{k-1}\phi\ sin\ k\phi\ cos\phi + sin^k \phi\ k\ cos k\phi ] \frac{d\phi}{dx}\\\\=(-1)^{k-1} (k-1)! \ k\ sin^{k-1}\phi\ [sin\ k\phi\ cos\phi+sin\phi\ cos\ k\phi] [-sin^2\phi]\\\\=(-1)^k\ k!\ sin^{k+1}\phi\ sin[(k+1)\phi][/tex]
So the formula in (2) is true for n = k+1 also. Hence, (1) is proved by mathematical Induction.
The formula for nth derivative is proved by Mathematical induction process.
Formula:
In the proof by induction , shown below, replace z = x/a. and follow this procedure.. dz/dx = 1/a. substitute this and you will be able to prove that.
The formula for the n-th derivative of y = arctan (x), is proved by induction.
[tex] \frac{d^n}{dx^n}tan^{-1}x=\frac{(-1)^{n-1}(n-1)!}{(1+x^2)^{\frac{n}{2}}}Sin[n\ sin^{-1}(\frac{1}{\sqrt{1+x^2}})],\\\\ for\ n=1,2,3,4,5.....\ eq\ (1)\\\\let\ sin\phi=\frac{1}{\sqrt{1+x^2}},\ \ so\ cos\phi=\frac{x}{\sqrt{1+x^2}},\\\\ cos\phi\ d\phi=-\frac{2x\ dx}{2(1+x^2)^\frac{3}{2}} \ \ \ \frac{d\phi}{dx}=-sin^2\phi \\\\ So\ (1) : y_x^n = (-1)^{n-1}(n-1)! \ Sin^n \phi\ Sin (n\phi)\ ....\ eq\ (2)[/tex]
Let (2) be true for n = k.
[tex] Differentiate\ y^k_x\ wrt\ x.\\\\ y^{k+1}_x=(-1)^{k-1}(k-1)!\ [k\ sin^{k-1}\phi\ sin\ k\phi\ cos\phi + sin^k \phi\ k\ cos k\phi ] \frac{d\phi}{dx}\\\\=(-1)^{k-1} (k-1)! \ k\ sin^{k-1}\phi\ [sin\ k\phi\ cos\phi+sin\phi\ cos\ k\phi] [-sin^2\phi]\\\\=(-1)^k\ k!\ sin^{k+1}\phi\ sin[(k+1)\phi][/tex]
So the formula in (2) is true for n = k+1 also. Hence, (1) is proved by mathematical Induction.
kvnmurty:
clik on thanks. select best ans.
Answered by
8
Answer:
Step-by-step explanation:
Similar questions