Math, asked by anandrajput29, 10 months ago

What is the number of terms in the series 5, 7, 9,...if its sum is 1020 ?

Answers

Answered by shadowsabers03
4

Let 1020 be the sum of first \displaystyle\sf{n} terms of the sequence 5, 7, 9,... where \displaystyle\sf{n\geq1,} i.e.,

\displaystyle\longrightarrow\sf{S_n=1020}

\displaystyle\longrightarrow\sf{\dfrac{n}{2}\Big[2\times5+(n-1)(7-5)\Big]=1020}

\displaystyle\longrightarrow\sf{n\Big[10+2(n-1)\Big]=2040}

\displaystyle\longrightarrow\sf{n\Big[2n+8\Big]=2040}

\displaystyle\longrightarrow\sf{n(n+4)=1020}

\displaystyle\longrightarrow\sf{n^2+4n-1020=0}

\displaystyle\longrightarrow\sf{n^2+34n-30n-1020=0}

\displaystyle\longrightarrow\sf{(n-30)(n+34)=0}

\displaystyle\Longrightarrow\sf{\underline{\underline{n=30}}}

Similar questions