Math, asked by trupu7867, 6 months ago

What is the order of the surd 3/4/8?
a) 3
b) 4
c) 7
d)12​

Answers

Answered by pulakmath007
3

SOLUTION

CORRECT QUESTION

TO CHOOSE THE CORRECT OPTION

\displaystyle \sf{ The \:  order  \: of \:  the \:  surd \:  \:  \sqrt[3]{ \sqrt[4]{8} } }

a) 3

b) 4

c) 7

d) 12

CONCEPT TO BE IMPLEMENTED

If an irrational numbers can be written in the form  \sf{ \sqrt[n]{x} }

Where x is a rational number and n is a natural number

 \sf{Then \: \: n \: \: is \: the \: order \: of \: the \: surd \: \: \sqrt[n]{x} }

EVALUATION

Here the given surd is

\displaystyle \sf{ \:  \sqrt[3]{ \sqrt[4]{8} } }

Now we simplify it as below

\displaystyle \sf{   \sqrt[3]{ \sqrt[4]{8} } }

\displaystyle \sf{  =  { \bigg( \sqrt[4]{8}  \bigg)}^{ \frac{1}{3} } }

\displaystyle \sf{  =  { \bigg(  {8}^{ \frac{1}{4} }  \bigg)}^{ \frac{1}{3} } }

\displaystyle \sf{  =  { \bigg(8 \bigg)}^{  \frac{1}{4} \times  \frac{1}{3} } }

\displaystyle \sf{  =  { \bigg( {2}^{3}  \bigg)}^{  \frac{1}{12} } }

\displaystyle \sf{  =  { \bigg( {2}^{}  \bigg)}^{  3 \times \frac{1}{12} } }

\displaystyle \sf{  =  { \bigg( {2}^{}  \bigg)}^{  \frac{1}{4} } }

\displaystyle \sf{  =  \sqrt[4]{2} }

Comparing with  \sf{ \sqrt[n]{x} } we get

n = 4 , x = 2

Order of the surd = 4

FINAL ANSWER

Hence the correct option is b) 4

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. the order of the surd 7√8

https://brainly.in/question/31962770

2. If x=√3a+2b + √3a-2b / √3a+2b - √3a-2b

prove that bx²-3ax+b=0

https://brainly.in/question/19664646

Similar questions