What is the path difference for destructive interference?
Answers
Answered by
0
The difference in distance traveled by the two waves is three-halves a wavelength; that is, the path difference is 1.5 . Whenever the two waves have a path difference of 1.5 wavelengths, a crest from one source will meet a trough from the other source and destructive interference will occur.
Once we have the condition for constructive interference, destructive interference is a straightforward extension. The basic requirement for destructive interference is that the two waves are shifted by half a wavelength. This means that the path difference for the two waves must be: R1– R2 = l /2.
Once we have the condition for constructive interference, destructive interference is a straightforward extension. The basic requirement for destructive interference is that the two waves are shifted by half a wavelength. This means that the path difference for the two waves must be: R1– R2 = l /2.
SourabPardhan:
Sorry wrong
Answered by
3
The difference in distance traveled by the two waves is three-halves a wavelength; that is, the path difference is 1.5 . Whenever the two waves have a path difference of 1.5 wavelengths, a crest from one source will meet a trough from the other source and destructive interference will occur.
Similar questions