Chemistry, asked by sakshamsangal2211, 1 year ago

What is the percentage dissociation if 1 mole of X2Y is introduced into 1 L vessel at 1000 K? Kc for the dissociation of X2Y = 1*10-6.
2 X2Y(g) ßà 2 X2 (g) + Y2 (g)

Answers

Answered by antiochus
5

Given that,

                           X_{2}Y    ⇆     2X_{2}   +    Y_{2}

Initial moles                1                         0                  0

Equili. moles            (1-α)                     2α                 α

K_{c} = \frac{4\alpha ^{3} }{(1-\alpha )}  = 10^{-6}

As   α very less than 1 therefore (1-α) = 1

4\alpha ^{3} = 10^{-6}

\alpha ^{3} = 0.25*10^{-6}

\alpha = 0.63*10^{-2} = 0.0063

Conclusion:

percentage of dissociation = 0.63 %

Answered by kobenhavn
2

Answer: Percent dissociation is 0.6%

Explanation:

moles of X_2Y = 1 mole

Volume of solution = 1 L

Initial concentration of X_2Y=\frac{moles}{\text {volume in Liters}}=\frac{1mole}{1L}=1M[/tex]

2X_2Y(g)\rightarrow 2X_2(g)+Y_2(g)

Initial      1M                   0             0

Eqm  1-2\alpha     2\alpha     1\alpha  

The expression for equilibrium constant for this reaction will be,

K_c=\frac{[X_2]^2\times [Y_2]}{[X_2Y]^2}

Now put all the given values in this expression, we get :

1\times 10^{-6}=\frac{(2\alpha)^2\times (\alpha)}{(1-2\alpha)^2}

By solving we get :

\alpha=0.006

Thus the percent dissociation is 0.006\times 100=0.6\%

Thus percent dissociation is 0.6%

Similar questions