Math, asked by Madi2533, 8 months ago

What is the perimeter of a triangle if area of an equilateral triangle is 9 under root 3

Answers

Answered by Anonymous
3

Answer:

\sf{The \ perimeter \ of \ the \ equilateral \ triangle \ is}

\sf{18 \ units.}

Given:

  • \sf{For \ equilateral \ triangle, }
  • \sf{\leadsto{Area=9\sqrt3 \ unit^{2}}}

To find:

  • \sf{The \ perimeter \ of \ the \ eqilateral \ triangle.}

Solution:

\boxed{\sf{Area \ of \ equilateral \ triangle=\dfrac{\sqrt3}{4}\times \ Side^{2}}}

\sf{\therefore{9\sqrt3=\dfrac{sqrt3}{4}\times \ Side^{2}}}

\sf{\therefore{Side^{2}=9\sqrt3\times\dfrac{4}{\sqrt3}}}

\sf{\therefore{Side^{2}=36}}

\sf{On \ taking \ square \ root \ of \ both \ sides}

\sf{\longmapsto{Side=6 \ units}}

\boxed{\sf{Perimeter \ of \ equilateral \ triangle=3\times \ Side}}

\sf{\therefore{Perimeter \ of \ equilateral \ triange=3\times6}}

\sf{\therefore{Perimeter \ of \ equilateral \ triange=18 \ units}}

\sf\purple{\tt{\therefore{The \ perimeter \ of \ the \ equilateral \ triangle \ is}}}

\sf\purple{\tt{18 \ units.}}

Similar questions