Math, asked by gomommy5, 3 months ago

What is the perimeter of rectangle JKLM, with vertices J(–1, 3), K(2, 3), L(2, –5), and M(–1, –5)?

Answers

Answered by MaheswariS
2

\textbf{Given:}

\textsf{Vertices of rectangle JKLM are J(-1,3), K(2,3), L(2,-5), M(-1,-5)}

\textbf{To find:}

\textsf{Perimeter of rectangle JKLM}

\textbf{Solution:}

\textsf{First we find length of the sides of the rectangle JKLM}

\mathsf{JK=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}}

\mathsf{JK=\sqrt{(-1-2)^2+(3-3)^2}}

\mathsf{JK=\sqrt{(-3)^2+(0)^2}}

\mathsf{JK=\sqrt{9}=3}

\mathsf{KL=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}}

\mathsf{KL=\sqrt{(2-2)^2+(3+5)^2}}

\mathsf{KL=\sqrt{(0)^2+8^2}}

\mathsf{KL=\sqrt{8^2}=8}

\mathsf{LM=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}}

\mathsf{LM=\sqrt{(2+1)^2+(-5+5)^2}}

\mathsf{LM=\sqrt{3^2+0^2}}

\mathsf{LM=\sqrt{3^2}=3}

\mathsf{JM=\sqrt{(x_1-x_2)^2+(y_1-y_2)^2}}

\mathsf{JM=\sqrt{(-1+1)^2+(3+5)^2}}

\mathsf{JM=\sqrt{0^2+8^2}}

\mathsf{JM=\sqrt{8^2}=8}

\mathsf{Perimeter\;of\;rectangle\;JKLM}

\mathsf{=JK+KL+LM+JM}

\mathsf{=3+8+3+8}

\mathsf{=22\;units}

\therefore\textsf{Perimeter of rectangle JKLM is 22 units}

Similar questions