Math, asked by hiyathakkar1, 9 months ago

What is the perimeter of the rectangle whose area =x2+3x-40?

Answers

Answered by pokemonma123ster
1

Answer:

4x+6

Step-by-step explanation:

first we will factorise x^2+3x-40 to find the 2 sides

we can write it as x^2+8x-5x-40

=x(x+8)-5(x+8)

=(x-5)(x+8)

therefore 2 sides are x-5 and x+8

and perimeter = 2(x-5)+2(x+8)

=2x-10+2x+16

=4x+6

pls mark as brainliest

Answered by nilesh102
2

 \mathfrak{ \huge \underline \red{Question: -  }} \\  \\ \purple{What \:  is  \: the  \: perimeter  \: of  \: the  \: rectangle \:  whose } \\  \purple{ \: area  \: = {x}^{2} +3x-40 \: ?}  \\  \\  \mathfrak{ \huge \underline \red{solution: -  }}  \\  \\  \underline{given  : -  }  \\ \\ the \: area \: of \: rectangele \: is \:  \:  \:  \red{ {x}^{2}  + 3x - 40} \\  \\  \underline{so \: now} \\  \\  =  > \red{ {x}^{2}  + 3x - 40}  \\  \\ =  > \red{ {x}^{2}  + 8x  - 5x- 40}  \\  \\ =  > \red{x(x + 8 ) - 5(x + 8)} \\  \\ =  > \red{ (x + 8)(x - 5)} \:  \:  \:  \: .......(1)  \\  \\ =  >  \red{x =  - 8 \:  \:  \: or \: \: x \:  = 5 } \\ \\  \: value \: of \: x \: for \: perimeter \: is \: not \: in \: negative \: so  \\   =  > \red{x = 5   \:  \:  \:  \: ..........(2)} \\ \\  \purple{let } \\ \\   \fbox{length \: (l) \:  = (x + 8) \:  \: and  \:  \: breadth \: (b) \:  =  (x - 5)} \\  \\   =  > \red{perimeter \: of \: rectangle \:  = 2(l+ b)} \\  \\  =  > \red{perimeter \: of \: rectangle \:  = 2( (x  + 8)+ (x - 5) )} \\  \\ =  > \red{perimeter \: of \: rectangle \:  = 2( x  + 8 + x - 5)} \\  \\ =  > \red{perimeter \: of \: rectangle \:  = 2(2x + 3 )} \\  \\ =  > \red{perimeter \: of \: rectangle \:  = 4x + 6 }  \\  \\ from \:  {eq}^{n} (2) \\  \\ =  > \red{perimeter \: of \: rectangle \:  = 4(5) + 6 }  \\  \\ =  > \red{perimeter \: of \: rectangle \:  = 20+ 6 }  \\  \\ =  > \red{perimeter \: of \: rectangle \:  = 26 units}  \\  \\  \fbox{perimeter \: of \: rectangle  \: is\: 26 \: units.}

Similar questions