What is the Poincaré conjecture?
Answers
Answered by
0
For compact 2-dimensional surfaces without boundary, if every loop can be continuously tightened to a point, then the surface is topologically homeomorphic to a 2-sphere (usually just called a sphere). The Poincaré conjecture, proved by Grigori Perelman, asserts that the same is true for 3-dimensional spaces.
Answered by
1
The Poincare Conjecture is essentially the first conjecture ever made in topology; it asserts that a 3-dimensional manifold is the same as the 3-dimensional sphere precisely when a certain algebraic condition is satisfied. The conjecture was formulated by Poincare around the turn of the 20th century.
For compact 2-dimensional surfaces without boundary, if every loop can be continuously tightened to a point, then the surface is topologically homeomorphic to a 2-sphere (usually just called a sphere). The Poincaré conjecture, proved by Grigori Perelman, asserts that the same is true for 3-dimensional spaces.
For compact 2-dimensional surfaces without boundary, if every loop can be continuously tightened to a point, then the surface is topologically homeomorphic to a 2-sphere (usually just called a sphere). The Poincaré conjecture, proved by Grigori Perelman, asserts that the same is true for 3-dimensional spaces.
Moderator811:
plz....mark as the brainliest
Similar questions