Economy, asked by manasagarwal11, 5 months ago

What is the point of inflexion

In economics
Answer in the marks of 3​

Answers

Answered by alkarana84
2

Answer:

Mathematics (from Greek: μάθημα, máthēma, 'knowledge, study, learning') includes the study of such topics as quantity (number theory),[1] structure (algebra),[2] space (geometry),[1] and change (mathematical analysis).[3][4][5] It has no generally accepted definition.[6][7]

Mathematics (from Greek: μάθημα, máthēma, 'knowledge, study, learning') includes the study of such topics as quantity (number theory),[1] structure (algebra),[2] space (geometry),[1] and change (mathematical analysis).[3][4][5] It has no generally accepted definition.[6][7]Greek mathematician Euclid (holding calipers), 3rd century BC, as imagined by Raphael in this detail from The School of Athens (1509–1511)[a]

Mathematics (from Greek: μάθημα, máthēma, 'knowledge, study, learning') includes the study of such topics as quantity (number theory),[1] structure (algebra),[2] space (geometry),[1] and change (mathematical analysis).[3][4][5] It has no generally accepted definition.[6][7]Greek mathematician Euclid (holding calipers), 3rd century BC, as imagined by Raphael in this detail from The School of Athens (1509–1511)[a]Mathematicians seek and use patterns[8][9] to formulate new conjectures; they resolve the truth or falsity of such by mathematical proof. When mathematical structures are good models of real phenomena, mathematical reasoning can be used to provide insight or predictions about nature. Through the use of abstraction and logic, mathematics developed from counting, calculation, measurement, and the systematic study of the shapes and motions of physical objects. Practical mathematics has been a human activity from as far back as written records exist. The research required to solve mathematical problems can take years or even centuries of sustained inquiry.

Mathematics (from Greek: μάθημα, máthēma, 'knowledge, study, learning') includes the study of such topics as quantity (number theory),[1] structure (algebra),[2] space (geometry),[1] and change (mathematical analysis).[3][4][5] It has no generally accepted definition.[6][7]Greek mathematician Euclid (holding calipers), 3rd century BC, as imagined by Raphael in this detail from The School of Athens (1509–1511)[a]Mathematicians seek and use patterns[8][9] to formulate new conjectures; they resolve the truth or falsity of such by mathematical proof. When mathematical structures are good models of real phenomena, mathematical reasoning can be used to provide insight or predictions about nature. Through the use of abstraction and logic, mathematics developed from counting, calculation, measurement, and the systematic study of the shapes and motions of physical objects. Practical mathematics has been a human activity from as far back as written records exist. The research required to solve mathematical problems can take years or even centuries of sustained inquiry.Rigorous arguments first appeared in Greek mathematics, most notably in Euclid's Elements.[10] Since the pioneering work of Giuseppe Peano (1858–1932), David Hilbert (1862–1943), and others on axiomatic systems in the late 19th century, it has become customary to view mathematical research as establishing truth by rigorous deduction from appropriately chosen axioms and definitions. Mathematics developed at a relati

Similar questions