What is the polynomial of the smallest degree with integer coefficients and with zero's 3,1+i,-1
Answers
Answered by
0
Answer:
Correct Question:-
Find a Quadratic Polynomial whose sum & product of zeroes are \sf\sqrt{2}
2
and 3 respectively.
AnswEr:-
Polynomial is \sf\; x^2 -\sqrt{2} + 3x
2
−
2
+3
Given:-
Sum of Zeroes = \sf\sqrt{2}
2
Product of zeroes = 3
By using Formula :-
:\implies\large\boxed{\sf{\red {x^2 - (\alpha\;+\;\beta) + (\alpha\;\beta)}}}:⟹
x
2
−(α+β)+(αβ)
\rule{150}2
Sum of Zeroes = \sf\;(\alpha \; + \; \beta)(α+β)
And, Product of zeroes = \sf\; (\alpha\; \beta)(αβ)
Sum of Zeroes = \sf\sqrt{2}
2
Product of zeroes = 3
:\implies\sf\; x^2 - \sqrt{2} + 3:⟹x
2
−
2
+3
:\implies\large\boxed{\sf{\blue{x^2 - \sqrt{2} + 3}}}:⟹
x
2
−
2
+3
\rule{1
Similar questions