Math, asked by jeannvilladolid, 6 months ago

what is the principal root of the following
1. √1
2. √8
3. √52
4. √256
5. √15

Answers

Answered by DevyaniKhushi
17

 \sqrt{1}  = 1 \\  \\  \sqrt{8}  = 2 \sqrt{2}  \\  \\  \sqrt{52}  = 2 \sqrt{13}  \\  \\  \sqrt{256}  = 16 \\  \\  \sqrt{15}  =  \sqrt{3} . \sqrt{5}

Answered by swethassynergy
1

The principal root of the following are:

1. √1        = 1

2. √8       = 2\sqrt{2}

3. √52     =2\sqrt{13}

4. √256   = 16

5. √15      =\sqrt{3} .\sqrt{5}

Step-by-step explanation:

Given:

(1). √1    ( 2). √8       (3). √52     (4). √256      (5). √15

To Find:

The principal root of the following

(1). √1    ( 2). √8       (3). √52     (4). √256      (5). √15

Concept Used:

For a non-negative real number, n  the principal square root is the non-negative solution to p^{2} =n.

The symbol √n  is used for the principal square root of n.

The  principal square root of 5 , denoted √5  is the number whose square is 5.

Solution:

As given, (1). √1    ( 2). √8       (3). √52     (4). √256      (5). √15

The principal root of the following are:

1. √1        = 1

2. √8       = 2\sqrt{2}

3. √52     =2\sqrt{13}

4. √256   = 16

5. √15      =\sqrt{3} .\sqrt{5}

#SPJ3

Similar questions