Math, asked by ramknice07, 1 year ago

what is the probability that can a leap year selected at random will contains 53 sundays

Answers

Answered by rachita07
1
A normal year has 52 Mondays, 52 Tuesdays, 52 Wednesdays, 52 Thursdays, 52 Fridays, 52 Saturdays and 52 Sundays + 1 day that could be anything depending upon the year under consideration. In addition to this, a leap year has an extra day which might be a Monday or Tuesday or Wednesday...or Sunday. 

We've now reduced the question to : what is the probability that in a given pair of consecutive days of the year one of them is a Sunday?

Our sample space is S : {Monday-Tuesday, Tuesday-Wednesday, Wednesday-Thursday,..., Sunday-Monday}
Number of elements in S = n(S) = 7
What we want is a set A (say) that comprises of the elements Saturday-Sunday and Sunday-Monday i.e. A : {Saturday-Sunday, Sunday-Monday}
Number of elements in set A = n(A) = 2
By definition, probability of occurrence of A = n(A)/n(S) = 2/7

Therefore, probability that a leap year has 53 Sundays is 2/7. (Note that this is true for any day of the week, not just Sunday)

ramknice07: if 123 represents "GOD" 456 represents "CAT" then DOG EAT EGG may be represented by 321 456 411, 321 756 811, 321 856 911, 321 756 711 plz solve and solution
Answered by mehul2403
0
A normal year has 52 Mondays, 52 Tuesdays, 52 Wednesdays, 52 Thursdays, 52 Fridays, 52 Saturdays and 52 Sundays + 1 day that could be anything depending upon the year under consideration. In addition to this, a leap year has an extra day which might be a Monday or Tuesday or Wednesday...or Sunday. 

We've now reduced the question to : what is the probability that in a given pair of consecutive days of the year one of them is a Sunday?

Our sample space is S : {Monday-Tuesday, Tuesday-Wednesday, Wednesday-Thursday,..., Sunday-Monday}
Number of elements in S = n(S) = 7
What we want is a set A (say) that comprises of the elements Saturday-Sunday and Sunday-Monday i.e. A : {Saturday-Sunday, Sunday-Monday}
Number of elements in set A = n(A) = 2
By definition, probability of occurrence of A = n(A)/n(S) = 2/7

Therefore, probability that a leap year has 53 Sundays is 2/7. (Note that this is true for any day of the week, not just Sunday)
Similar questions